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Peripheral Mechanisms of Remote Ischemic Conditioning
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Ischemic conditioning induces an endogenous protective mechanism that allows organisms to develop resistance to 
subsequent insults. The conditioning effect occurs across organs and species. Recently, much attention has been given to 
remote ischemic limb conditioning due to its non-invasive nature and potential therapeutic applications. While tolerance 
is induced at the primary injury site (e.g. the heart in cardiac ischemia and the brain in stroke), the site of conditioning 
application is away from the target organ, suggesting the protective factors are extrinsic in nature rather than intrinsic. This 
review will focus on the peripheral factors that account for the induction of tolerance. Topics of particular interest are blood 
flow changes, peripheral neural pathways, humoral factors in circulation, and the peripheral immune system. This review will 
also discuss how conditioning may negatively affect metabolically compromised conditions, its optimal dose, and window for 
therapy development. 
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Introduction
Ischemic conditioning is an endogenous protective mechanism 
that protects various organs and tissues by application of 
sub-lethal stimuli (Dirnagl et al., 2009). Several different 
conditioning paradigms have been reported based on the type 
of conditioning stimulus, including ischemia/hypoxia and 
immunological or pharmacological agents. Depending on the 
time of the application in relation to the occurrence of the full 
ischemic insults, the conditioning paradigm is considered as 
pre (before), per (during), or post (after) ischemic conditioning. 
The sub-lethal noxious stimuli may be applied directly onto 
the targeted organs to induce tolerance, or, alternatively, it may 
be applied away from the target organs. This is referred to as 
remote conditioning and induces cross-organ tolerance. Remote 
ischemic limb conditioning (RLC) against myocardial infarction 
showed a protective effect in rabbits and pigs (Birnbaum et al., 
1997; Kharbanda et al., 2002). Furthermore, preclinical studies 
and clinical trials indicated tolerance induction across organs, 
including heart, brain, retina, and kidney (White et al., 2015; 
Zarbock and Kellum, 2016; England et al., 2017; Chong et al., 
2018; Gidday, 2018).

Among conditioning paradigms, RLC has been given much 
more attention due to its non-invasive nature and feasibility in 
clinical application. Clinical trials of RLC established RLC as 

safe in patients with severe carotid artery stenosis, subarachnoid 
hemorrhage, and ischemic stroke (Gonzalez et al., 2014; 
England et al., 2017; Zhao et al., 2017). RLC also showed 
favorable effects in infarct reduction after cardiac ischemia and 
elective coronary artery bypass grafting surgery (Hausenloy et 
al., 2007; Prunier et al., 2014). The majority of early preclinical 
RLC studies were done in a pre-RLC setting, meaning RLC 
was performed before the disease as a preventative application. 
Because of the clinical applicability, however, the focus has 
been moved to post-RLC, a method of applying RLC after 
disease onset. Most of the clinical and preclinical post-RLC 
studies have performed RLC acutely after disease onset and 
those studies showed protective effects of RLC (Hoda et al., 
2012; Hoda et al., 2014; Kono et al., 2014; Khan et al., 2018). 
However, a number of recent clinical trials and preclinical 
studies are trying to expand the therapeutic window, from days 
to weeks after the onset of the condition or disease, to find 
the optimal therapeutic time window. One “dose” of RLC in 
ongoing clinical trials mostly consists of 3-5 cycles of 5-10 
min inflation and deflation, regardless of the type of disease 
(ClinicalTrials.gov identifier NCT02779712, NCT03794947, 
NCT03233919, NCT03566654 etc.). Most of the preclinical 
studies also adapted the above-mentioned intervention paradigm 
and confirmed that this “one dose” shows a protective effect 
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in animal models (Hoda et al., 2014; Kim et al., 2014; Khan et 
al., 2018). However, the optimal dose and time point of RLC 
have not been fully studied yet. A detailed discussion about the 
RLC paradigm and dose are discussed in “Optimal therapeutic 
window and dose of conditioning” section in this review. 

The underlying mechanism(s) for the tolerance induction 
by RLC may be multiple. Because RLC is performed remotely 
on the limb and the tolerance is achieved in the tissue/organ 
away from the site of application, underlying events that induce 
tolerance are likely derived from the periphery. In this review, 
we will evaluate potential mediators for RLC-induced inter-
organ protection and how peripheral conditions influence RLC 
outcome for potential therapy development.

Mediators for RLC tolerance induction 
RLC initiates a cascade of complex mechanisms that ultimately 
leads to the protection of a remote organ/tissue. Studies 
have reported several different mechanisms underlying 
RLC protection, mostly under cardiac and cerebral ischemic 
conditions. Since RLC is an inter-organ protective mechanism, 
the induction of tolerance likely involves several extrinsic 
factors including changes in blood flow, neural pathways, 
circulating factors, and alterations in peripheral immunity 
(Figure 1).

Blood flow
Many studies reported the effect of RLC in enhancing blood 
flow. Nitrite, a well-known vasodilator, has been considered a 
potential mediator of the RLC effect (Rassaf et al., 2014; Hess 
et al., 2016; Khan et al., 2018). RLC increases microcirculation 
and oxygen saturation in the surgical flaps, which ultimately 
leads to improved flap survival (Kolbenschlag et al., 2016). 
Microcirculation and portal venous flow and pressure are also 
increased by RLC in a rat model of arterialized orthotopic 
liver transplantation (Czigany et al., 2018). A positive effect 
of RLC on coronary circulation has been reported in a number 
of studies. Clinical studies showed that RLC intervention 
increased coronary microcirculation and coronary flow velocity 
in healthy subjects and in heart failure patients (Kono et al., 
2014; Santillo et al., 2018). Similarly, RLC significantly 
increased coronary flow and left ventricular pressure in Lewis 
rats (Zhou et al., 2007). In cerebral ischemia, a significant 
increase in cerebral blood flow was reported in mouse models 
of stroke (Hoyte et al., 2006; Hoda et al., 2012; Hoda et al., 
2014). RLC also increased cerebral perfusion in patients with 

symptomatic atherosclerotic intracranial arterial stenosis (Meng 
et al., 2012). While evidence strongly indicates that RLC has a 
role in increasing blood flow, it remains to be addressed whether 
RLC’s effect on blood flow would be sustained in metabolically 
compromised conditions associated with vascular dysfunction.  

Neural factors
Among multiple events underlying RLC-induced tolerance, 
studies indicated the transduction of protective signals from 
the site of RLC to the target organ/tissue through neural 
pathways. In preclinical studies of myocardial ischemia, 
the cardioprotective effect of RLC in a mesenteric artery 
occlusion rat model involves autonomic nerve signals, as the 
cardioprotection was abolished by hexamethonium, a ganglion 
blocker (Gho et al., 1996; Schoemaker and van Heijningen, 
2000). Similarly, reversal of RLC protection by blocking 
autonomic nerve stimulation was also reported by ganglion 
blockade in humans (Loukogeorgakis et al., 2005), suggesting 
the role of neural pathways in RLC protection. The blockade 
of the adrenergic receptors α1 by prazosin or β by timolol and 
propranolol, as well as inhibition of the muscarinic receptor by 
atropine, attenuated RLC protection (Southerland et al., 2007; 
Mastitskaya et al., 2012; Donato et al., 2013). Surgical resection 
such as vagotomy also abolished RLC-mediated protection 
in a rat and rabbit model of myocardial ischemia (Basalay et 
al., 2012; Donato et al., 2013). Inversely, the activation of the 
sensory system showed protective effects similar to that of RLC 
application in heart ischemia.  Neural signals were transferred 
from the remote site to the heart in response to sensory fiber 
activation induced by capsaicin, bradykinin, adenosine, and 
electric nerve stimulation (Schoemaker and van Heijningen, 
2000; Jones et al., 2009; Steensrud et al., 2010; Redington et 
al., 2012; Gross et al., 2013; Johnsen et al., 2014; Merlocco 
et al., 2014). Moreover, transection of the spinal cord at T7-
T10 abolished RLC protection (Jones et al., 2009; Donato et 
al., 2013) and spinal stimulation at C8-T2 reduced injury size 
(Southerland et al., 2007). These studies collectively suggest the 
involvement of neural pathways in the induction of tolerance by 
RLC. 

Humoral factors
Early RLC studies showed the involvement of circulating 
factors in RLC-mediated protection. One such evidence 
was that a blood transfusion from a RLC rabbit to a control 
rabbit reduced myocardial infarct (Dickson et al., 1999). 

Figure 1. Proposed protective mechanism of remote limb conditioning. RLC induces a host of changes that converge into the induction of 
tolerance. The peripheral factors triggered by RLC include changes in blood flow, neuronal and humoral factors, and immunity. These factors 
exert their effects either singly or interactively.
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Similarly, RLC performed in recipient pigs reduced myocardial 
infarction after heart transplantation (Konstantinov et al., 
2005), suggesting the presence of factors in the circulation 
may underlie the RLC effect. Other experimental evidence 
comes from a parabiotic study. One parabiont mouse received 
intracerebral hemorrhage while the other mouse received 
RLC without injury. The study showed that RLC application 
on the uninjured pair-mate accelerated hematoma clearance 
of the injured pair-mate (Vaibhav et al., 2018). Additionally, 
cardiac function in a Langendorff system, a method using 
isolated perfused hearts from warm-blooded animals according 
to Langendorff (Broadley, 1979), was improved by serum 
from humans subjected to RLC providing further evidence 
for the involvement of humoral factors in circulation for RLC 
protection (Heinen et al., 2018) .

While the exact nature of RLC-induced mediators in 
circulation has not been identified, a study showed that 
RLC results in changes in plasma proteomics in humans 
(Hepponstall et al., 2012). In preclinical studies using genetic 
and pharmacological approaches, circulating nitrite has been 
suggested as a key mediator of RLC, since the absence of nitric 
oxide synthase abolished RLC protection (Rassaf et al., 2014; 
Hess et al., 2016; Khan et al., 2018). In addition, autacoids, such 
as bradykinin, adenosine, opioids, and angiotensin, (Schoemaker 
and van Heijningen, 2000; Liem et al., 2002; Sharma et al., 
2015; Randhawa and Jaggi, 2016, 2017) increased antioxidant 
capacity (Morihira et al., 2006; Dong et al., 2010). Stromal cell-
derived factor-1 (Davidson et al., 2013), microRNA-144 (Li et 
al., 2014; Przyklenk, 2014), and a hydrophobic molecule with 
a molecular mass between 3.5 and 8 kDa (Lang et al., 2006; 
Serejo et al., 2007), were also suggested as RLC mediators. 
Thus, a wealth of literature indicates the involvement of 
multiple humoral factors that induce RLC protection.  

The connection of neural and humoral pathway
As RLC mechanism involves a series of cascades, a concept of 
“remote conditioning reflex” has been suggested that links the 
neural pathway and humoral system to the RLC effect (Gourine 
et al., 2010). In a mouse model of myocardial infarction, RLC 
was performed while interrupting a humoral pathway by the 
occlusion of a femoral vein or blocking neuronal pathways by 
femoral and/or sciatic nerve resection. The blocking of humoral 
and nerve pathways completely abolished the RLC-induced 
protective effect, while the nerve resection partially abolished 
the protection (Lim et al., 2010). Another experiment showed 
the involvement of the vagus-spleen axis in RLC protection in 
pig and rat models of coronary occlusion, as RLC protection 
was abolished through vagotomy and splenectomy (Lieder 
et al., 2018), supporting the involvement of both neural and 
humoral pathways in RLC protection. Clinical studies also 
showed the efficacy of RLC by treating the Langendorff model 

of rabbit hearts with blood dialysates collected from humans 
before and after the RLC (Jensen et al., 2012). The study found 
that RLC dialysates from healthy humans and diabetics without 
neuropathy showed protection, while those from subjects with 
diabetes with neuropathy failed to protect cardiac function 
in rabbits (Jensen et al., 2012). While these findings indicate 
that multiple RLC-released circulating factors in conjunction 
with an intact neural pathway account for RLC protection, the 
interaction can be disrupted in comorbid conditions. Future 
investigations should aim to understand neural and humoral 
interactions in normal and comorbid conditions and their 
protective effects in RLC. 

Immune-mediated responses
RLC has been shown to modulate systemic inflammation by 
altering several inflammatory pathways. For instance, RLC 
significantly decreased LPS-induced systemic inflammation 
by altering the NF-κB signaling pathway (Kim et al., 2014). 
RLC was shown to increase IL-4 and IL-10 anti-inflammatory 
cytokines in a lung injury model (Zhou et al., 2017). A 
microarray of human blood samples showed changes in 
inflammatory gene expression by reducing expression of pro-
inflammatory genes in leukocytes, leukocyte chemotaxis, 
apoptosis, and innate immune system signaling pathways 
(Konstantinov et al., 2004).

In addition to the aforementioned changes in inflammation-
related cytokines and chemokines, RLC-induced changes occur 
at the immune cell level. It has been shown that RLC induced 
changes in immune cell composition in circulation and in the 
spleen, an immediate reservoir of immune cells upon injury 
(Swirski et al., 2009). In naïve animals, RLC increased the 
total number of lymphocytes in the spleen and prevented T 
cell release into the blood from the spleen while increasing 
B cell release into the blood (Chen et al., 2018). In cerebral 
ischemia, RLC abolished stroke-induced spleen shrinkage, 
blocked splenic immune cell release, including T cell, B cell, 
and NK cell, into circulation, and reduced infiltration of those 
cells into the stroked brain (Chen et al., 2018). These results 
suggest that RLC modulates constituents of splenic immune 
cells in naïve and injured conditions and also their release and 
trafficking upon injury. In line with this result, Liu et al. (2018) 
also reported that RLC causes CD4 and CD8 lymphopenia 
in the spleen and circulation after ischemic stroke (Liu et al., 
2018). RLC reduced LPS-induced neutrophil infiltration in the 
liver that led to decreased systemic inflammation (Kim et al., 
2014) and reduced neutrophil adhesion, phagocytic activity, and 
apoptosis in healthy subjects (Shimizu et al., 2010).

Monocytes/macrophages have been implicated in 
stroke-induced inflammation and injury. RLC increased 
non-inflammatory resident monocytes without changing 
inflammatory monocytes in a rat model of ischemic stroke 
(Liu et al., 2016). In hemorrhagic stroke, RLC polarized 
macrophages to the anti-inflammatory phenotype and increased 
hematoma clearance in an AMPKα1-dependent manner 
(Vaibhav et al., 2018). Using bone marrow chimera, the same 
study showed a role for scavenger receptor CD36 in RLC 
protective effect, since the absence of CD36 in monocytes/
macrophages abolished RLC-induced hematoma clearance, 
while transplant wild-type bone marrow into CD36 knock-out 
recipients still showed the RLC protective effect (Vaibhav et 
al., 2018). This suggests that myeloid CD36 may be a critical 
mediator of the RLC protective effect. While these studies 
indicate that RLC shifts the brain to a less inflammatory state, 
it is not known whether the RLC-induced shift in the brain 
is due to reduced inflammation or enhanced inflammation 
resolution. However, the mechanisms by which RLC modulates 
cellular constituents in the periphery that potentially accelerate 
resolution in the injured brain remain to be identified.  

Figure 2: Effect of vascular risk factors on RLC-induced protection. 
Modifiable risk factors associated with metabolic dysfunctions 
and smoking, as well as non-modifiable risk factors (sex and age), 
attenuate or abolish the conditioning effect. The effect may be 
mediated through increasing thresholds of RLC, which requires 
validation of optimal doses in metabolically compromised conditions. 
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Exercise and conditioning
Exercise is overall beneficial to health, as it protects a host 
from metabolic dysfunction such as type 2 diabetes, stroke, 
and coronary artery disease (Shinton and Sagar, 1993; Yadav, 
2007; Colberg et al., 2016). Evidence suggests that RLC 
improves exercise performance by directly affecting limbs 
(especially lower limbs) or by improving functions of a remote 
organ, particularly the heart. Studies performed on cyclists 
found that RLC on the legs improved maximal oxygen uptake, 
exercise performance, swim time, and running trial (de Groot 
et al., 2010; Crisafulli et al., 2011; Jean-St-Michel et al., 2011; 
Bailey et al., 2012). The underlying mechanism of exercise 
performance improvement by RLC includes vasodilatation in 
skeletal muscle through activation of vascular smooth muscle 
KATP channels and enhancement of adenosine release (Duncker 
et al., 1993; Joyner and Proctor, 1999), preservation of blood 
flow in lower extremities (Bailey et al., 2012), an increase in 
coronary blood flow (Shimizu et al., 2007; Zhou et al., 2007), 
and extracellular matrix peptides LG3 (Salmeron et al., 2018).

Exercise also changes circulating immune cells (Tipton, 
2014). For instance, exercise increases the number of 
lymphocytes and their subsets, including NK cells and T cells, 
in the blood (Gleeson and Bishop, 2005), and also regulates 
circulating monocytes (Lancaster and Febbraio, 2014). RLC 
alters immune cell circulation in a similar manner as exercise. 
Thus, a common mechanism shared by RLC and exercise 
suggests that exercise can be considered a form of conditioning 
stimuli. A critical advantage of RLC, however, lies in its 
applicability, as it can be performed on individuals who are 
unable to exercise.

Negative conditioning 
Despite favorable outcomes in animal models, results from 
clinical trials of conditioning have been inconclusive and 
afflicted by heterogeneity. Although numerous studies showed 
the protective effect of RLC, others reported that RLC did 
not have an effect on average running or sprint speed, oxygen 
uptake, aerobic energy cost, maximal heart rate, and blood 
pressure (de Groot et al., 2010; Patterson et al., 2015; Tocco 
et al., 2015). Moreover, a number of studies also reported 
negative results of RLC in different disease settings (Secher 
et al., 2014; Baranyai et al., 2015; Kierulf-Lassen et al., 2015; 
Sloth et al., 2015). These studies have shown that ischemic 
conditioning-mediated protection is abrogated in individuals 
with comorbidities, such as hypercholesterolemia, diabetes, 
and hypertensive conditions (Szilvassy et al., 1995; Tosaki 
et al., 1996). In a preclinical study with normoglycemic and 
acute hyperglycemic Wistar rats, the cardioprotective effect 
of RLC was abolished in the hyperglycemic group (Baranyai 
et al., 2015). In post hoc subgroup analysis of  ST-elevation 
myocardial infarction patients, RLC intervention was less 
effective for smokers as compared to non-smokers, but other 
comorbidities such as lipid level, glucose level, and medication 
use did not affect RLC protection (Sloth et al., 2015). Based 
on these findings, it is reasonable to predict that comorbidities 
influence the outcome of RLC effect or negatively influence 
conditioning-mediated protection (Figure 2). Comparison 
studies between normal and comorbid animals can identify the 
inconsistencies of conditioning effects and facilitate the design 
of clinical trials based on comorbidities.

Similar to the negative effect of RLC in individuals with 
metabolic dysfunctions, studies also suggest that age and 
sex, non-modifiable risk factors, affect the RLC-mediated 
protective effect. In a study using a Langendorff system with 
rat hearts, RLC plasma obtained from young male volunteers 
reduced isolated heart infarct size from both young and aged 
rats (Heinen et al., 2018). On the other hand, RLC plasma 
from female volunteers failed to reduce infarction regardless 

of the donor age (Heinen et al., 2018). Another animal study 
reported the effect of age by showing the absence of RLC-
mediated cardioprotection in aged (22-24 months) male rats 
(Behmenburg et al., 2017). Other preclinical studies claimed 
that age and comorbid conditions raise the threshold for RLC-
induced protection because those conditions need more robust 
conditioning signals (Boengler et al., 2009; Ferdinandy et al., 
2014) (Figure 2). Further details of the effect of risk factors, 
comorbidities, co-medications, and anesthetics in RLC, and 
the challenge of RLC are discussed elsewhere (Ferdinandy et 
al., 2014; McCafferty et al., 2014; Wider and Przyklenk, 2014; 
Epps and Smart, 2016). Although not fully established, the 
means by which comorbidities and/or medications influence the 
protective effect of RLC remains to be fully established in order 
to develop RLC as a reliable therapeutic for patients.

Optimal therapeutic window and dose of conditioning
One challenge regarding RLC is the determination of proper 
dose and therapeutic window for a maximal protective effect in 
patients. The most commonly used RLC paradigm is 3-5 cycles 
of 5 min inflation and 5 min deflation. Meta-analysis of RLC 
in myocardial infarct patients showed the maximal protective 
effect when RLC was applied for at least 3 cycles and ≥ 30 min 
duration (Man et al., 2017). An interesting result from the study 
was that an increased dose of RLC often does not correlate 
with a better outcome. In fact, while 4-6 cycles of RLC 
showed significant protection after cardiac ischemia, 8 cycles 
did not show further protection in a mouse model (Johnsen 
et al., 2016). Two min and 5 min inflation/deflation showed 
the same protective effect, while prolonged 10 min inflation/
deflation cycle abolished the protection (Johnsen et al., 2016). 
On the other hand, other studies reported that repeated RLC 
showed more consistent beneficial effect with dose-dependent 
improvement (Wei et al., 2011; Jones et al., 2014; Yamaguchi 
et al., 2015). We observed, however, that repeated RLC (RLC 
every 24 hours up to 3D or 7D) did not show an additional 
effect on peripheral monocyte subset change as compared to 
a single conditioning (Yang et al., 2018). Another preclinical 
study in a vascular cognitive impairment and dementia model 
showed that daily RLC up to 1 month is equally effective as 
daily RLC up to 4 months (Khan et al., 2018), suggesting 
dose-dependency of RLC occurs in a limited frame. Different 
paradigms of RLC also have been employed in phase II clinical 
trials to establish the optimal dose of RLC. ReCAST-2 study 
(ClinicalTrials.gov identifier NCT02779712) performed 3 
different RLC paradigms: a single dose of 4 cycles of 5 min 
inflation/deflation, an additional repeated dose of 4 cycles of 5 
min inflation/deflation 1 hour after the initial dose, and repeated 
doses at one-hour intervals applied daily for 4 days. Regarding 
the site of RLC, it has been reported no significant difference 
in RLC effect when it was applied on either arm or thigh 
(Dezfulian et al., 2017). It was also reported one vs. two hind-
limb conditioning showed an equal protective effect (Johnsen et 
al., 2016). 

The time of RLC application is an additional variable 
that requires consideration. Most of the preclinical studies in 
myocardial infarct models performed RLC during ischemia 
or right after reperfusion. In our mouse model of ischemic 
stroke, we also observed a protective effect when RLC was 
applied 2h after stroke (Yang et al., 2018). Therapeutic phases 
for RLC protection occur at acute phases (within 2 hours) and 
delayed phases (up to 3 days) (Kuzuya et al., 1993; Marber et 
al., 1993; Guo et al., 1998). A difference in outcome between 
early application of RLC at 12-24h after stroke and delayed 
application at 120h after stroke in an ischemic stroke model 
has been reported (Doeppner et al., 2018). In this study, RLC 
performed at 12h and 24h significantly reduced the infarct 
volume, while 120h post-RLC did not. However, the latter 
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delayed RLC group showed improved neurological recovery 
up to 84 days, indicating that RLC can be protective across 
acute pathology and recovery depending on the time of RLC 
application. While therapeutic windows based on animal 
studies are difficult to translate to humans, few clinical trials 
have applied delayed RLC. CORIC-MI study (ClinicalTrials.
gov identifier NCT03233919) is designed to apply RLC 
immediately after or 2-28 days post myocardial infarction. Once 
the ongoing clinical trials are completed, there will be a better 
understanding of optimal dose and therapeutic time window for 
RLC that can be applied to patients.  

Summary and conclusion
Progression of injury development in cardio and cerebrovascular 
diseases is profoundly influenced by peripheral circulating 
factors, immune cells, and blood flow. It is thus reasonable 
to modify peripheral systems to alter injury development and 
subsequent repair processes. One such manipulation is RLC, 
which triggers changes in the peripheral system to induce an 
endogenous tolerance mechanism in target organs. Studies 
in multiple species have shown that ischemic conditioning 
confers resistance to subsequent insults, an effect that is neither 
organ- nor tissue-specific. Unlike the direct application of 
conditioning to the tissue at risk, RLC can be applied remotely 
from the primary injury site. RLC is advantageous because it 
is an effective and non-invasive way to remotely induce cross-
tolerance in multiple organs. Emerging evidence indicates that 
it can be applied after the primary insult, thereby providing 
therapeutic applicability in a clinical setting. Since RLC is 
applied away from protected organs (i.e., brain or heart), a 
host of RLC-induced peripheral changes including blood flow, 
neural pathways, circulating factors, and immune mediators 
are implicated as underlying events for tolerance induction. 
A remaining challenge of RLC is understanding adaptive 
changes in the peripheral system in metabolically compromised 
conditions with vascular dysfunction, which attenuate or nullify 
the effect of RLC. Additionally, optimization of dose and time 
window of post-stroke RLC in normal and comorbid conditions 
may be necessary to develop effective RLC strategies in future 
clinical trials.   
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